熒光光纖測溫技術(shù)
熒光光纖測溫技術(shù)基于熒光材料的光學(xué)特性,通過測量熒光材料的熒光壽命變化來實(shí)現(xiàn)溫度測量。與傳統(tǒng)的強(qiáng)度型熒光測溫方法相比,壽命衰減型熒光測溫具有更高的測量精度和穩(wěn)定性。
熒光壽命是指熒光材料從激發(fā)態(tài)回到基態(tài)所需的時(shí)間。在壽命衰減型熒光測溫中,通常選用稀土離子摻雜的材料作為熒光敏感元件。常用的摻雜離子有銪(Eu)、鉺(Er)、鐿(Yb)等。這些離子的熒光壽命對溫度變化非常敏感,且在較寬的溫度范圍內(nèi)呈現(xiàn)出良好的線性關(guān)系。
測溫原理可以簡單描述為:當(dāng)熒光材料被激發(fā)光源照射時(shí),部分電子會(huì)躍遷至激發(fā)態(tài)。隨后,電子會(huì)以一定的概率和速率通過輻射躍遷或無輻射躍遷的方式釋放能量,回到基態(tài)。溫度升高時(shí),無輻射躍遷的概率增大,導(dǎo)致熒光壽命減小。通過測量熒光衰減曲線,并對其進(jìn)行擬合,即可得到熒光壽命值,進(jìn)而換算出被測物體的溫度信息。
在實(shí)際應(yīng)用中,熒光材料通常制備成粉末狀,并填充到光纖中形成熒光敏感探頭。激發(fā)光源(如脈沖激光器)的光通過光纖傳輸至探頭,激發(fā)熒光材料。熒光信號通過同一根或另一根光纖傳回測量儀器,經(jīng)過濾波、放大等處理后,再由高速數(shù)據(jù)采集卡進(jìn)行采集和分析。
為了提高測量精度,通常采用時(shí)間分辨法對熒光衰減曲線進(jìn)行采集。該方法利用時(shí)間延遲門技術(shù),在不同的時(shí)間窗口內(nèi)對熒光信號進(jìn)行采樣,獲得多個(gè)時(shí)間點(diǎn)上的熒光強(qiáng)度值,從而擬合出熒光衰減曲線。另一種常用的方法是頻域法,通過調(diào)制激發(fā)光源的頻率,測量熒光信號的相位延遲和幅度衰減,計(jì)算出熒光壽命。
與強(qiáng)度型熒光測溫相比,壽命衰減型熒光測溫具有以下優(yōu)點(diǎn):
- 抗干擾能力強(qiáng):熒光壽命不受激發(fā)光強(qiáng)度和熒光采集效率等因素的影響,測量結(jié)果更加穩(wěn)定可靠。
- 動(dòng)態(tài)范圍寬:熒光壽命在較寬的溫度范圍內(nèi)呈現(xiàn)良好的線性關(guān)系,適用于大范圍溫度測量。
- 可實(shí)現(xiàn)絕對測溫:通過標(biāo)定熒光材料的溫度-壽命曲線,可直接獲得絕對溫度值,無需參考溫度。
- 多參數(shù)測量:利用不同摻雜離子的熒光壽命對溫度的不同響應(yīng)特性,可實(shí)現(xiàn)同時(shí)測量溫度和應(yīng)變等多個(gè)參數(shù)。
熒光光纖測溫技術(shù)已在許多領(lǐng)域得到應(yīng)用,如電力設(shè)備狀態(tài)監(jiān)測、石油鉆探、化工過程控制、生物醫(yī)學(xué)等。隨著熒光材料制備工藝和測量技術(shù)的不斷發(fā)展,熒光光纖測溫的性能將進(jìn)一步提升,在更廣泛的場合發(fā)揮重要作用。